Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
BMC Geriatr ; 24(1): 415, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730347

RESUMO

BACKGROUND: Parkinson's disease (PD) is a slowly progressive neurodegenerating disease that may eventually lead to disabling condition and pose a threat to the health of aging populations. This study aimed to explore the association of two potential risk factors, selenium and cadmium, with the prognosis of Parkinson's disease as well as their interaction effect. METHODS: Data were obtained from the National Health and Nutrition Examination Survey (NHANES) 2005-2006 to 2015-2016 and National Death Index (NDI). Participants were classified as Parkinson's patients by self-reported anti-Parkinson medications usage. Cox regression models and restricted cubic spline models were applied to evaluate the association between PD mortality and selenium intake level as well as blood cadmium level. Subgroup analysis was also conducted to explore the interaction between them. RESULTS: A total of 184 individuals were included. In full adjusted cox regression model (adjusted for age, gender, race, hypertension, pesticide exposure, smoking status and caffeine intake), compared with participants with low selenium intake, those with normal selenium intake level were significantly associated with less risk of death (95%CI: 0.18-0.76, P = 0.005) while no significant association was found between low selenium intake group and high selenium group (95%CI: 0.16-1.20, P = 0.112). Restricted cubic spline model indicated a nonlinear relationship between selenium intake and PD mortality (P for nonlinearity = 0.050). The association between PD mortality and blood cadmium level was not significant (95%CI: 0.19-5.57, P = 0.112). However, the interaction term of selenium intake and blood cadmium showed significance in the cox model (P for interaction = 0.048). Subgroup analysis showed that the significant protective effect of selenium intake existed in populations with high blood cadmium but not in populations with low blood cadmium. CONCLUSION: Moderate increase of selenium intake had a protective effect on PD mortality especially in high blood cadmium populations.


Assuntos
Cádmio , Doença de Parkinson , Selênio , Humanos , Cádmio/sangue , Masculino , Feminino , Doença de Parkinson/sangue , Doença de Parkinson/mortalidade , Selênio/sangue , Selênio/administração & dosagem , Estudos Retrospectivos , Idoso , Pessoa de Meia-Idade , Inquéritos Nutricionais/métodos , Fatores de Risco , Dieta , Causas de Morte/tendências , Estudos de Coortes
2.
J Gastroenterol ; 59(3): 229-249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310161

RESUMO

BACKGROUND: Liver fibrosis can progress to cirrhosis and hepatic carcinoma without treatment. CircDCBLD2 was found to be downregulated in liver fibrosis. However, the precise underlying mechanism requires further investigation. METHODS: qRT-PCR, Western blot, and immunohistochemistry assays were used to detect the related molecule levels. HE, Masson's trichrome, and Sirius Red staining were used to assess the pathological changes in mice's liver tissues. Flow cytometric analysis and commercial kit were used to assess the levels of lipid reactive oxygen species (ROS), malonaldehyde (MDA), glutathione (GSH), and iron. Cell viability was assessed by MTT. Immunoprecipitation was used to study the ubiquitination of PARK7. Mitophagy was determined by immunostaining and confocal imaging. RIP and Co-IP assays were used to assess the interactions of circDCBLD2/HuR, HuR/STUB1, and STUB1/PARK7. Fluorescence in situ hybridization and immunofluorescence staining were used to assess the co-localization of circDCBLD2 and HuR. RESULTS: CircDCBLD2 was downregulated, whereas PARK7 was upregulated in liver fibrosis. Ferroptosis activators increased circDCBLD2 while decreasing PARK7 in hepatic stellate cells (HSCs) and mice with liver fibrosis. CircDCBLD2 overexpression reduced cell viability and GSH, PARK7, and GPX4 expression in erastin-treated HSCs while increasing MDA and iron levels, whereas circDCBLD2 knockdown had the opposite effect. CircDCBLD2 overexpression increased STUB1-mediated PARK7 ubiquitination by promoting HuR-STUB1 binding and thus increasing STUB1 mRNA stability. PARK7 overexpression or HuR knockdown reversed the effects of circDCBLD2 overexpression on HSC activation and ferroptosis. CircDCBLD2 reduced liver fibrosis in mice by inhibiting PARK7. CONCLUSION: CircDCBLD2 overexpression increased PARK7 ubiquitination degradation by upregulating STUB1 through its interaction with HuR, inhibiting HSC activation and promoting HSC ferroptosis, ultimately enhancing liver fibrosis.


Assuntos
Ferroptose , Neoplasias Hepáticas , Animais , Camundongos , Células Estreladas do Fígado/metabolismo , Hibridização in Situ Fluorescente , Ferro/metabolismo , Ferro/farmacologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Proteína Desglicase DJ-1/farmacologia , Ubiquitinação
3.
Comput Biol Chem ; 108: 107992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056378

RESUMO

Most existing graph neural network-based methods for predicting miRNA-disease associations rely on initial association matrices to pass messages, but the sparsity of these matrices greatly limits performance. To address this issue and predict potential associations between miRNAs and diseases, we propose a method called strengthened hypergraph convolutional autoencoder (SHGAE). SHGAE leverages multiple layers of strengthened hypergraph neural networks (SHGNN) to obtain robust node embeddings. Within SHGNN, we design a strengthened hypergraph convolutional network module (SHGCN) that enhances original graph associations and reduces matrix sparsity. Additionally, SHGCN expands node receptive fields by utilizing hyperedge features as intermediaries to obtain high-order neighbor embeddings. To improve performance, we also incorporate attention-based fusion of self-embeddings and SHGCN embeddings. SHGAE predicts potential miRNA-disease associations using a multilayer perceptron as the decoder. Across multiple metrics, SHGAE outperforms other state-of-the-art methods in five-fold cross-validation. Furthermore, we evaluate SHGAE on colon and lung neoplasms cases to demonstrate its ability to predict potential associations. Notably, SHGAE also performs well in the analysis of gastric neoplasms without miRNA associations.


Assuntos
MicroRNAs , MicroRNAs/genética , Algoritmos , Redes Neurais de Computação , Biologia Computacional/métodos
4.
Lung Cancer ; 187: 107439, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113653

RESUMO

OBJECTIVE: Lung cancer is classified into central and peripheral types based on the anatomic location. The present study aimed to explore the distinct patterns of genomic alterations between central- and peripheral-type non-small cell lung cancers (NSCLCs) with negative driver genes and identify potential driver genes and biomarkers to improve therapy strategies for NSCLC. METHODS: Whole-exome sequencing (WES) was performed with 182 tumor/control pairs of samples from 145 Chinese NSCLC patients without EGFR, ALK, or ROS1 alterations. Significantly mutated genes (SMGs) and somatic copy number alterations (SCNAs) were identified. Subsequently, tumor mutation burden (TMB), weighted genome integrity index (wGII), copy number alteration (CNA) burden, Shannon diversity index (SDI), intratumor heterogeneity (ITH), neoantigen load (NAL), and clonal variations were evaluated in central- and peripheral-type NSCLCs. Furthermore, mutational signature analysis and survival analysis were performed. RESULTS: TP53 was the most frequently mutated gene in NSCLC and more frequently mutated in central-type NSCLC. Higher wGII, ITH, and SDI were found in central-type lung adenocarcinoma (LUAD) than in peripheral-type LUAD. The NAL of central-type lung squamous cell carcinoma (LUSC) with stage III/IV was significantly higher than that of peripheral-type LUSC. Mutational signature analysis revealed that SBS10b, SBS24, and ID7 were significantly different in central- and peripheral-type NSCLCs. Furthermore, central-type NSCLC was found to evolve at a higher level with fewer clones and more subclones, particularly in central-type LUSC. Survival analysis revealed that TMB, CNA burden, NAL, subclonal driver mutations, and subclonal mutations were negatively related to the overall survival (OS) and the progression-free survival (PFS) of central-type LUAD. CONCLUSIONS: Central-type NSCLC tended to evolve at a higher level and might suggest a favorable response to immunotherapy. Our study also identified several potential driver genes and promising biomarkers for the prognosis and prediction of chemotherapy responses in NSCLC.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Adenocarcinoma de Pulmão/patologia , Carcinoma de Células Escamosas/patologia , Genômica , Mutação/genética , Biomarcadores
5.
Antioxidants (Basel) ; 12(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38136193

RESUMO

Atherosclerosis remains a leading cause of cardiovascular diseases. Although the mechanism for atherosclerosis is complex and has not been fully understood, inflammation and oxidative stress play a critical role in the development and progression of atherosclerosis. N-acetylcysteine (NAC) has been used as a mucolytic agent and an antidote for acetaminophen overdose with a well-established safety profile. NAC has antioxidant and anti-inflammatory effects through multiple mechanisms, including an increase in the intracellular glutathione level and an attenuation of the nuclear factor kappa-B mediated production of inflammatory cytokines like tumor necrosis factor-alpha and interleukins. Numerous animal studies have demonstrated that NAC significantly decreases the development and progression of atherosclerosis. However, the data on the outcomes of clinical studies in patients with atherosclerosis have been limited and inconsistent. The purpose of this review is to summarize the data on the effect of NAC on atherosclerosis from both pre-clinical and clinical studies and discuss the potential mechanisms of action of NAC on atherosclerosis, as well as challenges in the field.

6.
Int J Biol Sci ; 19(14): 4442-4456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781041

RESUMO

As the most common malignancy from mediastinum, the metabolic reprogramming of thymoma is important in its development. Nevertheless, the connection between the metabolic map and thymoma development is yet to be discovered. Thymoma was categorized into three subcategories by unsupervised clustering of molecular markers for metabolic pathway presentation in the TCGA dataset. Different genes and functions enriched were demonstrated through the utilization of metabolic Gene Ontology (GO) analysis. To identify the main contributors in the development of thymic malignancy, we utilized Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The prognosis of thymoma was evaluated by screening the essential pathways and genes using GSVA scores and machine learning classifiers. Furthermore, we integrated the transcriptomics findings with spectrum metabolomics investigation, detected through LC-MS/MS, in order to establish the essential controller network of metabolic reprogramming during thymoma progression. The thymoma prognosis is related to glycosphingolipid biosynthesis-lacto and neolacto series pathway, of what high B3GNT5 indicate poor survival. The investigation revealed that glycosphingolipid charts have a significant impact on metabolic dysfunction and could potentially serve as crucial targets in the clinical advancement of metabolic therapy.


Assuntos
Timoma , Neoplasias do Timo , Humanos , Timoma/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neoplasias do Timo/genética , Análise por Conglomerados
7.
Eur J Hosp Pharm ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758318

RESUMO

OBJECTIVE: This study aimed to assess the effectiveness of a low trough serum concentration of vancomycin on acute kidney injury in infants and toddlers in the paediatric intensive care unit (PICU). METHODS: A retrospective cohort study was performed of 126 infants and toddlers (aged between 29 days and 3 years) from the PICU of a tertiary care hospital who were administered intravenous vancomycin between January 2019 and December 2022. Information about their demographic factors, duration of PICU stay, time of administration and trough levels of vancomycin were retrieved. Descriptive statistics were used for demographic factors and multivariable logistic regression analyses were conducted to assess the determining factors. RESULTS: Based on the trough concentration of vancomycin, the participants were divided into three groups as follows: 4-5 mg/L, 5-15 mg/L and >15 mg/L. The serum vancomycin concentration was significantly related to body weight, albumin, cystatin C, urea nitrogen in serum, serum creatinine and creatinine clearance (p<0.05) in these patients. Multivariate analysis showed that body weight, albumin, cystatin C, urea nitrogen in serum and creatinine clearance were independent contributors to the trough vancomycin concentration. There was no difference in the effectiveness of different trough concentrations on patients (p=0.241). The cumulative incidence of acute kidney injury was highest in the group with a trough concentration of vancomycin >15 mg/L (p<0.01). CONCLUSIONS: Patients with a vancomycin trough concentration of 4-5 mg/L in the PICU had a high cure rate (79.4%) and a low incidence of acute kidney injury (HR 18.3, 95% CI 5.135 to 87.621; p<0.001). Therefore, the serum trough concentration should be considered but it should also be combined with the treatment effect to achieve individualised administration for the clinical application of vancomycin.

8.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712419

RESUMO

Hormone replacement therapy (HRT) is not recommended for treating learning and memory decline in menopausal women because it exerts adverse effects by activating classic estrogen receptors ERα and ERß. The membrane estrogen receptor G protein-coupled receptor 30 (GPR30) has been reported to be involved in memory modulation; however, the underlying mechanisms are poorly understood. Here, we found that GPR30 deletion in astrocytes, but not in neurons, impaired learning and memory in female mice. Astrocytic GPR30 depletion induced A1 phenotype transition, impairing neuronal function. Further exploration revealed that Praja1 (PJA1), a RING ubiquitin ligase, mediated the effects of astrocytic GPR30 on learning and memory by binding to Serpina3n, which is a molecular marker of neuroinflammation in astrocytes. GPR30 positively modulated PJA1 expression through the CREB signaling pathway in cultured murine and human astrocytes. Additionally, the mRNA levels of GPR30 and PJA1 were reduced in exosomes isolated from postmenopausal women while Serpina3n levels were increased in the plasma. Together, our findings suggest a key role for astrocytic GPR30 in the learning and memory abilities of female mice and identify GPR30/PJA1/Serpina3n as potential therapeutic targets for learning and memory loss in peri- and postmenopausal women.


Assuntos
Astrócitos , Receptores de Estrogênio , Animais , Feminino , Humanos , Camundongos , Aprendizagem , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Ubiquitina-Proteína Ligases
9.
Insect Mol Biol ; 32(6): 748-760, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37658706

RESUMO

Autophagy is a process that serves to degrade damaged proteins and organelles, thereby promoting cell homeostasis, differentiation, development and survival. Many miRNAs have been found to have regulatory roles in autophagy. In insects, it has been shown that autophagy is involved in hormone-regulated programmed cell death during metamorphic midgut remodelling. However, whether this is also true during the remodelling of the honey bee midgut is unclear. In the present study, we explored the relationship between autophagy and midgut remodelling and sought to identify miRNAs involved in this physiological process. We found that autophagy occurred during midgut remodelling and that the inhibition of autophagy resulted in midgut dysplasia in prepupae. Differentially expressed miRNAs enriched in the autophagy signalling pathway during midgut remodelling were identified by small RNA-seq. Ame-miR-980-3p, which targets the autophagy-related gene Atg2B, was screened out. Furthermore, abnormal expression of ame-miR-980-3p in the pupal stage led to the thinning of the midgut wall of newly emerged bees (NE). When ame-miR-980-3p expression was inhibited, the intestinal villi of NE bees became significantly shorter and sparse, and the lipid signal in the peritrophic matrix of Pb almost disappeared, indicating that the adult midgut was underdeveloped and the lipid absorption ability was weakened. Taken together, ame-miR-980-3p targeted Atg2B to participate in the regulation of midgut autophagy in the pupae, and the abnormal expression of ame-miR-980-3p would interfere with cell proliferation and death in the process of midgut remodelling, hinder the formation of adult midgut and eventually lead to adult midgut dysplasia and affect the lipid absorption function of the midgut in Apis mellifera.


Assuntos
MicroRNAs , Abelhas/genética , Animais , MicroRNAs/genética , Sistema Digestório/metabolismo , Autofagia/genética , Lipídeos
10.
Exp Mol Med ; 55(7): 1462-1478, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37394585

RESUMO

The role of Gli-similar 2 (Glis2) in hepatic fibrosis (HF) is controversial. In this study, we focused on the functional and molecular mechanisms involved in the Glis2-mediated activation of hepatic stellate cells (HSCs)-a milestone event leading to HF. The expression levels of Glis2 mRNA and protein were significantly decreased in the liver tissues of patients with severe HF and in mouse fibrotic liver tissues as well as HSCs activated by TGFß1. Functional studies indicated that upregulated Glis2 significantly inhibited HSC activation and alleviated BDL-induced HF in mice. Downregulation of Glis2 was found to correlate significantly with DNA methylation of the Glis2 promoter mediated by methyltransferase 1 (DNMT1), which restricted the binding of hepatic nuclear factor 1-α (HNF1-α), a liver-specific transcription factor, to Glis2 promoters. In addition, the enrichment of DNMT1 in the Glis2 promoter region was mediated by metastasis-associated lung adenocarcinoma transcriptor-1 (MALAT1) lncRNA, leading to transcriptional silencing of Glis2 and activation of HSCs. In conclusion, our findings reveal that the upregulation of Glis2 can maintain the resting state of HSCs. The decreased expression of Glis2 under pathological conditions may lead to the occurrence and development of HF with the expression silencing of DNA methylation mediated by MALAT1 and DNMT1.


Assuntos
RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/metabolismo , Cirrose Hepática/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Estreladas do Fígado/metabolismo
11.
Virol J ; 20(1): 109, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264390

RESUMO

BACKGROUND: The relationship between chronic hepatitis B (CHB) and Coronavirus disease 2019 (COVID-19) has been inconsistent in traditional observational studies. METHODS: We explored the total causal and direct causal associations between CHB and the three COVID-19 outcomes using univariate and multivariate Mendelian randomization (MR) analyses, respectively. Genome-wide association study datasets for CHB and COVID-19 were obtained from the Japan Biobank and the COVID-19 Host Genetics Initiative, respectively. RESULTS: Univariate MR analysis showed that CHB increased the risk of SARS-CoV-2 infection (OR = 1.04, 95% CI 1.01-1.07, P = 3.39E-03), hospitalized COVID-19 (OR = 1.10, 95% CI 1.06-1.13, P = 7.31E-08), and severe COVID-19 (OR = 1.16, 95%CI 1.08-1.26, P = 1.43E-04). A series of subsequent sensitivity analyses ensured the stability and reliability of these results. In multivariable MR analyses adjusting for type 2 diabetes, body mass index, basophil count, and smoking, genetically related CHB is still positively associated with increased risk of SARS-CoV-2 infection (OR = 1.06, 95% CI 1.02-1.11, P = 1.44E-03) and hospitalized COVID-19 (OR = 1.12, 95% CI 1.07-1.16, P = 5.13E-07). However, the causal link between CHB and severe COVID-19 was attenuated after adjustment for the above variables. In addition, the MR analysis did not support the causal effect of COVID-19 on CHB. CONCLUSIONS: This study provides evidence that CHB increases COVID-19 susceptibility and severity among individuals of East Asian ancestry.


Assuntos
COVID-19 , Hepatite B Crônica , Humanos , COVID-19/epidemiologia , População do Leste Asiático , Estudo de Associação Genômica Ampla , Hepatite B Crônica/complicações , Hepatite B Crônica/epidemiologia , Reprodutibilidade dos Testes
12.
Front Cell Infect Microbiol ; 13: 1142387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274312

RESUMO

Background: Substantial sex differences exist in atherosclerosis. Excessive reactive oxygen species (ROS) formation could lead to endothelial dysfunction which is critical to atherosclerosis development and progression. Helicobacter pylori (H. pylori) infection has been shown to attenuate endothelial function via exosomes-mediated ROS formation. We have demonstrated that H. pylori infection selectively increases atherosclerosis risk in males with unknown mechanism(s). The present study was to test the hypothesis that H. pylori infection impaired endothelial function selectively in male mice through exosome-mediated ROS formation. Methods and results: Age-matched male and female C57BL/6 mice were infected with CagA+ H. pylori to investigate sex differences in H. pylori infection-induced endothelial dysfunction. H. pylori infection attenuated acetylcholine (ACh)-induced endothelium-dependent aortic relaxation without changing nitroglycerine-induced endothelium-independent relaxation in male but not female mice, associated with increased ROS formation in aorta compared with controls, which could be reversed by N-acetylcysteine treatment. Treatment of cultured mouse brain microvascular endothelial cells with exosomes from H. pylori infected male, not female, mice significantly increased intracellular ROS production and impaired endothelial function with decreased migration, tube formation, and proliferation, which could be prevented with N-acetylcysteine treatment. Conclusions: H. pylori infection selectively impairs endothelial function in male mice due to exosome-mediated ROS formation.


Assuntos
Aterosclerose , Exossomos , Infecções por Helicobacter , Helicobacter pylori , Masculino , Feminino , Animais , Camundongos , Espécies Reativas de Oxigênio , Células Endoteliais , Acetilcisteína , Infecções por Helicobacter/complicações , Camundongos Endogâmicos C57BL , Aterosclerose/complicações , Endotélio
13.
Front Mol Neurosci ; 16: 1171101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342100

RESUMO

Biomarkers are measurable substances that could be used as objective indicators for disease diagnosis, responses to treatments, and outcomes predictions. In this review, we summarized the data on a number of important biomarkers including glutamate, S100B, glial fibrillary acidic protein, receptor for advanced glycation end-products, intercellular adhesion molecule-1, von willebrand factor, matrix metalloproteinase-9, interleukin-6, tumor necrosis factor-a, activated protein C, copeptin, neuron-specific enolase, tau protein, gamma aminobutyric acid, blood glucose, endothelial progenitor cells, and circulating CD34-positive cells that could be potentially used to indicate the disease burden and/or predict clinical outcome of ischemic stroke. We examined the relationship between specific biomarkers and disease burden and outcomes and discussed the potential mechanisms underlying the relationship. The clinical significance and implications of these biomarkers were also discussed.

14.
RSC Adv ; 13(21): 14361-14369, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37179993

RESUMO

Copper nanoparticles have attracted a wide attention because of their low cost and high specific surface area. At present, the synthesis of copper nanoparticles has the problems of complicated process and environmentally unfriendly materials like hydrazine hydrate and sodium hypophosphite that would pollute water, harm human health and may even cause cancer. In this paper, a simple and low-cost two-step synthesis method was used to prepare highly stable and well-dispersed spherical copper nanoparticles in solution with a particle size of about 34 nm. The prepared spherical copper nanoparticles were kept in solution for one month without precipitation. Using non-toxic l-ascorbic acid as the reducing and secondary coating agent, polyvinylpyrrolidone (PVP) as the primary coating agent, and NaOH as the pH modulator, the metastable intermediate CuCl was prepared. Due to the characteristics of the metastable state, copper nanoparticles were rapidly prepared. Moreover, to improve the dispersibility and antioxidant, the PVP and l-ascorbic acid were used to coat the surface of copper nanoparticles. Finally, the mechanism of the two-step synthesis of copper nanoparticles was discussed. This mechanism mainly relies on the two-step dehydrogenation of l-ascorbic acid to obtain copper nanoparticles.

16.
Acta Pharm Sin B ; 13(2): 819-833, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873179

RESUMO

Chemotherapy is an important adjuvant treatment of glioma, while the efficacy is far from satisfactory, due not only to the biological barriers of blood‒brain barrier (BBB) and blood‒tumor barrier (BTB) but also to the intrinsic resistance of glioma cells via multiple survival mechanisms such as up-regulation of P-glycoprotein (P-gp). To address these limitations, we report a bacteria-based drug delivery strategy for BBB/BTB transportation, glioma targeting, and chemo-sensitization. Bacteria selectively colonized into hypoxic tumor region and modulated tumor microenvironment, including macrophages repolarization and neutrophils infiltration. Specifically, tumor migration of neutrophils was employed as hitchhiking delivery of doxorubicin (DOX)-loaded bacterial outer membrane vesicles (OMVs/DOX). By virtue of the surface pathogen-associated molecular patterns derived from native bacteria, OMVs/DOX could be selectively recognized by neutrophils, thus facilitating glioma targeted delivery of drug with significantly enhanced tumor accumulation by 18-fold as compared to the classical passive targeting effect. Moreover, the P-gp expression on tumor cells was silenced by bacteria type III secretion effector to sensitize the efficacy of DOX, resulting in complete tumor eradication with 100% survival of all treated mice. In addition, the colonized bacteria were finally cleared by anti-bacterial activity of DOX to minimize the potential infection risk, and cardiotoxicity of DOX was also avoided, achieving excellent compatibility. This work provides an efficient trans-BBB/BTB drug delivery strategy via cell hitchhiking for enhanced glioma therapy.

17.
PLoS One ; 18(3): e0273754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36920938

RESUMO

BACKGROUND: Liver tumor remains an important cause of cancer-related death. Nanosecond pulsed electric fields (nsPEFs) are advantageous in the treatment of melanoma and pancreatic cancer, but their therapeutic application on liver tumors need to be further studied. METHODS: Hep3B cells were treated with nsPEFs. The biological behaviors of cells were detected by Cell Counting Kit-8, 5-ethynyl-20-deoxyuridine, and transmission electron microscopy (TEM) assays. In vivo, rabbit VX2 liver tumor models were ablated by ultrasound-guided nsPEFs and radiofrequency ablation (RFA). Contrast-enhanced ultrasound (CEUS) was used to evaluate the ablation effect. HE staining and Masson staining were used to evaluate the tissue morphology after ablation. Immunohistochemistry was performed to determine the expression of Ki67, proliferating cell nuclear antigen, and α-smooth muscle actin at different time points after ablation. RESULTS: The cell viability of Hep3B cells was continuously lower than that of the control group within 3 days after pulse treatment. The proliferation of Hep3B cells was significantly affected by nsPEFs. TEM showed that Hep3B cells underwent significant morphological changes after pulse treatment. In vivo, CEUS imaging showed that nsPEFs could completely ablate model rabbit VX2 liver tumors. After nsPEFs ablation, the area of tumor fibrosis and the expression of Ki67, proliferating cell nuclear antigen, and α-smooth muscle actin were decreased. However, after RFA, rabbit VX2 liver tumor tissue showed complete necrosis, but the expression of PCNA and α-smooth muscle actin did not decrease compared to the tumor group. CONCLUSIONS: nsPEFs can induce Hep3B cells apoptosis and ablate rabbit VX2 liver tumors in a non-thermal manner versus RFA. The ultrasound contrast agent can monitor immediate effect of nsPEF ablation. This study provides a basis for the clinical study of nsPEFs ablation of liver cancer.


Assuntos
Actinas , Neoplasias Hepáticas , Animais , Coelhos , Antígeno Nuclear de Célula em Proliferação , Antígeno Ki-67 , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , Apoptose
18.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36592062

RESUMO

Recent studies have revealed that long noncoding RNAs (lncRNAs) are closely linked to several human diseases, providing new opportunities for their use in detection and therapy. Many graph propagation and similarity fusion approaches can be used for predicting potential lncRNA-disease associations. However, existing similarity fusion approaches suffer from noise and self-similarity loss in the fusion process. To address these problems, a new prediction approach, termed SSMF-BLNP, based on organically combining selective similarity matrix fusion (SSMF) and bidirectional linear neighborhood label propagation (BLNP), is proposed in this paper to predict lncRNA-disease associations. In SSMF, self-similarity networks of lncRNAs and diseases are obtained by selective preprocessing and nonlinear iterative fusion. The fusion process assigns weights to each initial similarity network and introduces a unit matrix that can reduce noise and compensate for the loss of self-similarity. In BLNP, the initial lncRNA-disease associations are employed in both lncRNA and disease directions as label information for linear neighborhood label propagation. The propagation was then performed on the self-similarity network obtained from SSMF to derive the scoring matrix for predicting the relationships between lncRNAs and diseases. Experimental results showed that SSMF-BLNP performed better than seven other state of-the-art approaches. Furthermore, a case study demonstrated up to 100% and 80% accuracy in 10 lncRNAs associated with hepatocellular carcinoma and 10 lncRNAs associated with renal cell carcinoma, respectively. The source code and datasets used in this paper are available at: https://github.com/RuiBingo/SSMF-BLNP.


Assuntos
RNA Longo não Codificante , Humanos , Algoritmos , Biologia Computacional/métodos , RNA Longo não Codificante/genética , Software , Carcinoma Hepatocelular/genética , Carcinoma de Células Renais/genética , Neoplasias Hepáticas/genética , Neoplasias Renais/genética
19.
Radiology ; 307(1): e221291, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36511807

RESUMO

Background Macrotrabecular-massive (MTM) subtype of hepatocellular carcinoma (HCC) is an aggressive variant associated with angiogenesis and immunosuppressive tumor microenvironment, which is expected to be noninvasively identified using radiomics approaches. Purpose To construct a CT radiomics model to predict the MTM subtype and to investigate the underlying immune infiltration patterns. Materials and Methods This study included five retrospective data sets and one prospective data set from three academic medical centers between January 2015 and December 2021. The preoperative liver contrast-enhanced CT studies of 365 adult patients with resected HCC were evaluated. The Third Xiangya Hospital of Central South University provided the training set and internal test set, while Yueyang Central Hospital and Hunan Cancer Hospital provided the external test sets. Radiomic features were extracted and used to develop a radiomics model with machine learning in the training set, and the performance was verified in the two test sets. The outcomes cohort, including 58 adult patients with advanced HCC undergoing transarterial chemoembolization and antiangiogenic therapy, was used to evaluate the predictive value of the radiomics model for progression-free survival (PFS). Bulk RNA sequencing of tumors from 41 patients in The Cancer Genome Atlas (TCGA) and single-cell RNA sequencing from seven prospectively enrolled participants were used to investigate the radiomics-related immune infiltration patterns. Area under the receiver operating characteristics curve of the radiomics model was calculated, and Cox proportional regression was performed to identify predictors of PFS. Results Among 365 patients (mean age, 55 years ± 10 [SD]; 319 men) used for radiomics modeling, 122 (33%) were confirmed to have the MTM subtype. The radiomics model included 11 radiomic features and showed good performance for predicting the MTM subtype, with AUCs of 0.84, 0.80, and 0.74 in the training set, internal test set, and external test set, respectively. A low radiomics model score relative to the median value in the outcomes cohort was independently associated with PFS (hazard ratio, 0.4; 95% CI: 0.2, 0.8; P = .01). The radiomics model was associated with dysregulated humoral immunity involving B-cell infiltration and immunoglobulin synthesis. Conclusion Accurate prediction of the macrotrabecular-massive subtype in patients with hepatocellular carcinoma was achieved using a CT radiomics model, which was also associated with defective humoral immunity. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Yoon and Kim in this issue.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Adulto , Masculino , Humanos , Pessoa de Meia-Idade , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos , Microambiente Tumoral
20.
Arterioscler Thromb Vasc Biol ; 43(1): 92-108, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36412197

RESUMO

BACKGROUND: Hematopoietic stem cell (HSC) therapy has shown promise for tissue regeneration after ischemia. Therefore, there is a need to understand mechanisms underlying endogenous HSCs activation in response to ischemic stress and coordination of angiogenesis and repair. SHP-1 plays important roles in HSC quiescence and differentiation by regulation of TGF-ß1 signaling. TGF-ß1 promotes angiogenesis by stimulating stem cells to secrete growth factors to initiate the formation of blood vessels and later aid in their maturation. We propose that SHP-1 responds to ischemia stress in HSC and progenitor cells (HSPC) via regulation of TGF-ß1. METHODS: A mouse hind limb ischemia model was used. Local blood perfusion in the limbs was determined using laser doppler perfusion imaging. The number of positive blood vessels per square millimeter, as well as blood vessel diameter (µm) and area (µm2), were calculated. Hematopoietic cells were analyzed using flow cytometry. The bone marrow transplantation assay was performed to measure HSC reconstitution. RESULTS: After femoral artery ligation, TGF-ß1 was initially decreased in the bone marrow by day 3 of ischemia, followed by an increase on day 7. This pattern was opposite to that in the peripheral blood, which is concordant with the response of HSC to ischemic stress. In contrast, SHP-1 deficiency in HSC is associated with irreversible activation of HSPCs in the bone marrow and increased circulating HSPCs in peripheral blood following limb ischemia. In addition, there was augmented auto-induction of TGF-ß1 and sustained inactivation of SHP-1-Smad2 signaling, which impacted TGF-ß1 expression in HSPCs in circulation. Importantly, restoration of normal T GF-ß1 oscillations helped in the recovery of limb repair and function. CONCLUSIONS: HSPC-SHP-1-mediated regulation of TGF-ß1 in both bone marrow and peripheral blood is required for a normal response to ischemic stress.


Assuntos
Células-Tronco Hematopoéticas , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Isquemia , Extremidade Inferior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA